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Abstract
This paper considers the series–parallel redundant reliability problems in which both the multiple component choices of each

subsystem and the redundancy levels of every selected component are to be decided simultaneously so as to maximize the system

reliability. The reliability design optimization problem has been studied in the literature for decades, usually using mathematical

programming or heuristic optimization approaches. The difficulties encountered for both methodologies are the number of

constraints and the difficulty of satisfying the constraints. A penalty-guided immune algorithms-based approach is presented for

solving such integer nonlinear redundant reliability design problem. The results obtained by using immune algorithms-based

approach are compared with the results obtained from 33 test problems from the literature that dominate the previously

mentioned solution techniques. As reported, solutions obtained by the proposed method are better than or as well as the

previously best-known solutions.

# 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The system reliability optimization is very impor-

tant in the real-world applications and the various

kinds of systems have been studied in the literature for

decades. Generally, as Misra and Sharma [1] men-

tioned, two main approaches are used to enhance the

system reliability. One of the approaches is to increase
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the reliability of the elements constituted in the

system, and the other is the use of redundant elements

in various subsystems in the system. In the former

approach, the system reliability can be enhanced to

some degree, but the required enhancement of the

reliability may be never attainable even though the

most currently reliable elements are used. Use of the

later approach is to select the optimal combination of

elements and redundancy levels; the system can also

be enhanced, but the cost, weight, volume, etc. will be

increased as well. In addition to the above two

approaches, the combination of the two approaches
.
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Nomenclature

ai,j,k the jth resource requirement associated with

type k component of subsystem i, where

ai,j,k > 0

bj the limitation on the jth resource

ki the number of component choices for sub-

system i, 1 � i � n

n the number of subsystem in the system

qi,k the failure probability of type k component

in subsystem i

xi,k the number of type k components in sub-

system i
and reassignment of interchangeable elements are

also feasible ways for increasing the system reliability

[2].

Based on the above two main approaches, two main

categories of reliability design problems, the integer

and mixed integer problems, are investigated. The

series–parallel system problem with known compo-

nent reliabilities for determining the redundancy

allocation belongs to integer reliability problems, in

which the decision variables are constrained to integer

value [3–7]. For the mixed-integer reliability pro-

blems, component reliabilities and redundancy alloca-

tion are to be decided simultaneously [1,4,8–10]. In

the formulation of the series–parallel system problem

considered in this paper, for each subsystem, multiple

elements choices are used in parallel. The problem is

then to choose the optimal combination of elements

and redundancy levels to meet two constraints with

cost and weight, respectively. With the known cost,

reliability and weight for each element, the system

design and elements selection of problem becomes a

combinatorial optimization problem. Moreover, such

redundancy allocation problem for series–parallel

systems considered in this paper has been showed that

this is an NP hard problem [11]. For solving this

difficult problem, the most used integer programming

techniques in literatures are generally classified into

three categories that are approximate techniques,

exact techniques and heuristic/meta-heuristic techni-

ques [2,12]. The approximate techniques are such as

the uses of Lagrangian multiplier and geometric

programming. Kuo et al. [13] used the branch-and-

bound strategy and Lagrangian multipliers, and Misra
and Sharma [1] used the geometric programming for

finding the nearest integers. To a problem, the exact

techniques are the methods which can provide an

exact optimal solution. For example, the use of

dynamic programming for maximizing the system

reliability with a single cost-constraint [14]. Fyffe

et al. [15] used the same method to solve more difficult

design problem where a system with 14 subsystems

and the cost and weight constraints are considered.

Furthermore, improved dynamic programming algo-

rithm was presented by Nakagawa and Miyazaki [4]

with the use of surrogate constraints for the problem

with above two constraints. The heuristic techniques

are the intuitive procedure for obtaining the near-

optimal solutions in a reasonably short time. A

majority of the recent work in the problem is devoted

to developing heuristic and meta-heuristic algorithms

for solving the optimal redundancy allocation pro-

blems [2]. Several heuristic methods have been

suggested in literatures for the redundant allocation

problems [16,17]. The meta-heuristics methods, based

more on artificial intelligence than traditional

mathematic programming methods, include genetic

algorithms (GAs), simulated annealing, Tabu search,

fuzzy optimization approach, etc. Recently, the

genetic algorithm has been widely and successfully

applied for solving the system reliability problem

[18,5,6,10].

A new meta-heuristic optimization approach

employing immune algorithms (IAs) to solve the

redundant allocation problem is proposed in this

paper. The merits of immune algorithms lie in pattern

recognition, memorization capabilities [19] and the

theory was originally proposed by Jerne [20].

Compared with other meta-heuristic approaches such

as genetic algorithms and evolution strategies, the

immune algorithms-based approach has very distinct

characteristics: (1) the diversity is embedded by

calculating the affinity and (2) the self-adjustment of

the immune response is accomplished by the boost or

restriction of antibody generations. These character-

istics are also the advantages for solving the

combinatory problems because: (1) the diversities

of the feasible spaces can be better ensured, i.e., the

global optimum can be more likely achieved and (2) a

population of antibodies in IAs can operate simulta-

neously so that the possibility of paralysis in the whole

process can be reduced.
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This paper is arranged as follows: in the next

section the series–parallel redundant reliability pro-

blem is briefly described; in Section 3, the general

concept of an immune algorithms-based approach is

described and numerical examples of 33 various

problems are solved and discussed in Section 4.

Finally, the conclusion of the paper is summarized.
2. Model description and assumptions

For integer reliability problems, both the type of

component and number of the selected type of

component, i.e., the redundancy allocations for each

subsystem are to be decided simultaneously. The

model of the series–parallel redundant reliability

system with n subsystems and m separable linear

constraints is considered and stated as the following

integer nonlinear programming problem:

max RðxjqÞ ¼
Yn

i¼1

ð1 � q
xi;1

i;1 q
xi;2

i;2 ; . . . ; q
xi;ki

i;ki
Þ (1)

Xn Xki
s:t:
i¼1 k¼1

ai;j;kxi;k � bj; j ¼ 1; 2; . . . ;m (2)

xi;k 2 non-negative integer (3)
It is noted that the problem generalizes the general

series–parallel reliability problems when ki = 1 for

i = 1, 2, . . ., n [7].

In the above model of a series–parallel system

problem considered in this paper, for each of n

subsystems, k component choices are used in parallel.

Then, the overall system is connected in series by

these n subsystems with the limited resources to

maximize whole system reliability. An example is

shown in Fig. 1. The overall system includes 14

subsystems (n = 14) with weight and cost limitation

are 186 and 130, respectively. The corresponding

input data are described in Table 1. In Fig. 1, it shows

that the first subsystem contains three components of

choice 3, the second subsystem contains two compo-

nents of choice 1, and so on. The reliability of the

overall system is 0.9841755.

As previous investigations, the approximate tech-

niques such as Lagrangian multiplier and geometric

programming used for solving the global optimum

allocation are generally time-consuming due to the
complex transformation and the integer solutions are

not necessarily optimal any longer. Moreover, the

exact solutions for the reliability optimization

problems are not necessarily desirable because it is

very hard to obtain the exact solutions, and even when

they are available, their utility may become marginal

[2]. Because of difficulties of applying the approx-

imate and exact techniques, a major part of the

work on solving the reliability optimizations is

devoted to developing heuristic/meta-heuristic algo-

rithms. Above all, the genetic algorithms become very

popular tools for solving the problem successfully

[18,5,6,10]. Although genetic algorithms can be easily

designed and implemented without the requirement of

sophisticated mathematical treatment, the difficulties

are in the determining appropriate values for the

parameters. If the parameters are not assigned

properly, the genetic algorithms will more likely

converge to a local optimum and hard to reach the

global optimum. One of the characteristics of immune

algorithms-based approach mentioned in previous

section, the global optimum could be more easily

achieved than genetic algorithms since the diversities

of the feasible spaces can be better ensured. For the

above reason, the immune algorithms-based approach

is applied for solving the series–parallel redundant

reliability problems in this research.
3. Immune algorithms implementation

The natural immune system of all animals is a very

complex system for defense against pathogenic

organisms. A two-tier line of defense is in the system

including the innate immune system and the adaptive

immune system. The basic components are lympho-

cytes and antibodies [21]. The cells of the innate

immune system are immediately available to combat

against a wide variety of antigen without previous

exposure to them. The antibody production in

response to a determined infectious agent (antigen)

is the adaptive immune response mediated by

lymphocytes which are responsible for recognition

and elimination of the pathogenic agents [22]. The

cells in the adaptive system are able to develop an

immune memory so that they can recognize the same

antigenic stimulus when it is presented to the organism

again. Also, all the antibodies are produced only in
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Fig. 1. A redundant reliability problem with multiple component choices.
response to specific infections. There are two main

types of lymphocytes: B-lymphocytes (B-cells) and T-

lymphocytes (T-cells). B-cells and T-cells carry

surface receptor molecules capable of recognizing

antigens. The B-cells produced by the bone marrow

show a distinct chemical structure and can be

programmed to make only one antibody that is placed

on the outer surface of the lymphocyte to act as a

receptor. The antigens will only bind to these receptors

with which it makes a good fit [23].

To distinguish and eliminate the intruders of the

organism is the main task of the immune system so

that it must has the capability of self/non-self

discrimination. As mentioned previously, various

antibodies can be produced and then can recognize

the specific antigens. The portion of antigen recog-

nized by antibody is called epitope which acts as an
Table 1

Component data for the example [15]

Subsystem No. Component choices

Choice 1 Choice 2

P C W P C

1 0.90 1 3 0.93 1

2 0.95 2 8 0.94 1

3 0.85 2 7 0.90 3

4 0.83 3 5 0.87 4

5 0.94 2 4 0.93 2

6 0.99 3 5 0.98 3

7 0.91 4 7 0.92 4

8 0.81 3 4 0.90 5

9 0.97 2 8 0.99 3

10 0.83 4 6 0.85 4

11 0.94 3 5 0.95 4

12 0.79 2 4 0.82 3

13 0.98 2 5 0.99 3

14 0.90 4 6 0.92 4
antigen determinant. Every type of antibody has its

own specific antigen determinant which is called

idiotope. Moreover, in order to produce enough

specific effector cells to against an infection, and

activated lymphocyte has to proliferate and then

differentiate into these effector cells. This process is

called clonal selection [24] and followed by the

genetic operations such that a large clone of plasma

cell is formed. Therefore, the antibodies can be

secreted and ready to bind antigens. According to

above facts, Jerne [19] proposed an idiotype network

hypothesis which is based on the clonal selection

theory. In his hypothesis, some types of recognizing

sets are activated by some antigens and produce an

antibody which will then activate other types of

recognizing sets. By this way, the activation is

propagated through entire network of recognizing
Choice 3 Choice 4

W P C W P C W

4 0.91 2 2 0.95 2 5

10 0.93 1 9 * * *

5 0.87 1 6 0.92 4 4

6 0.85 5 4 * * *

3 0.95 3 5 * * *

4 0.97 2 5 0.96 2 4

8 0.94 5 9 * * *

7 0.91 6 6 * * *

9 0.96 4 7 0.91 3 8

5 0.90 5 6 * * *

6 0.96 5 6 * * *

5 0.85 4 6 0.90 5 7

5 0.97 2 6 * * *

7 0.95 5 6 0.99 6 9
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sets via antigen–antibody reactions. It is noted that the

antigen identification is not done by a single or

multiple recognizing sets but by antigen–antibody

interactions. The more details are referred to Huang

[23,25]. From this point of view, for solving the

combinatory optimization problems, the antibody and

antigen can be looked as the solution and objection

function, respectively.

3.1. Computation procedures

Thecomputationproceduresoftheproposedimmune

algorithms-based approach illustrated in Fig. 2 work

as follows and the discussion comes in sequence:

Step 1: Generate an initial population of strings

(antibodies) randomly.

Step 2: Evaluate each individual in current population

and calculate the corresponding fitness value for each

individual.

Step 3: Select the best n individual with highest fitness

values.

Step 4: Clone the best n individuals (antibodies)

selected in Step 3. Note that the clone size for each

select individual is an increasing function of the
Fig. 2. The immune-b
affinity with the antigen. In other words, the number of

posterity of each antibody is proportional to their

fitness values, i.e., the higher the fitness, the larger the

clone size [26].

Step 5: The set of the clones in Step 4 will suffer the

genetic operation process, i.e., crossover and mutation

[27].

Step 6: Calculate the new fitness values of these new

individuals (antibodies) from Step 5. Select those

individuals who are superior to the individuals in the

memory set, and then the superior individuals replace

the inferior individuals in the memory set. While the

memory set is updated, the individuals will be

eliminated while their structures are too similar. So

the individuals in the memory set can keep the

diversity.

Step 7: Check the stopping criterion, if not stop then

go to Step 2. Otherwise go to next step.

Step 8: Stop. The optimal or near-optimal solution(s)

can be obtained from the memory set.

In our implementation, the integer solutions are

represented by strings of binary digits. Each string

consisting of substring includes the type of component

and redundant levels for each subsystem. The details
ased approach.



T.-C. Chen, P.-S. You / Computers in Industry 56 (2005) 195–205200
have been described in next section. In the above

procedures, the clonal selection and affinity matura-

tion processes are described in details by De Castro

and Von Zuben [26]. The stopping criterion is the

maximum iterations in this paper.

3.2. The representation mechanism and

embodiment of diversity

The solution representation for IAs can be used in

the same manner to that of genetic algorithms. In our

implementation, the antibody will be represented by a

binary string, each string consisting of a substring for

each subsystem. Each subsystem in turn consists of a

binary substring representing the type of component

and the level of redundancy. A real number can be

represented by a binary string and rounded to the

nearest integer [28]. It is illustrated in Fig. 3.

Because of the soul of diversity in the IAs, the

quality of solutions in the feasible space can be better

guaranteed and obtained. So, a suppression process

(diversity embodiment) is needed and shown in Step 6

in the proposed IAs procedure. In this study, for each

antibody represented by a binary string can be

translated into a integer string which illustrates the

type of component and the corresponding redundant

levels as described above. The diversity in each pair of

antibody i (Abi) and antibody j (Abj) can be evaluated

by calculating their affinity (fij) by following way:

fij ¼ kAbi � Abjk for all i and j

While the affinity between each pair of antibodies in

memory is obtained, the antibodies will be eliminated

if the affinity is less than the predefined threshold.

So, the diversity of the antibodies in memory is

embodied. It is noted that the way of evaluating

affinities of Ab–Ab and Ab–Ag are distinct. The

procedure of evaluating the antibodies is to calculate
Fig. 3. Binary string represents a solution of a series–parallel

reliability problem.
the Ab–Ag affinity for each antibody that will be

illustrated in the following section.

3.3. Constrained optimization

For breeding the superior antibodies for the next

generation (iteration), to evaluate the antibody is

necessary step for the immune algorithms. The goal of

the algorithm is to adapt the unfeasible antibodies to

the feasible antigen(s), so as to reduce the constraint

violations of the search for obtaining the optimal or

near-optimal solutions. Like the majority of genetic

algorithms applications, for handling these constraint

violations the penalty function has been defined. The

penalty function increases the penalty for infeasible

solutions based on the distance away from the feasible

region. According to Eq. (2) in the problem formula-

tion, the function has been defined and described as

follows.

Assume the individual j within the memory of

N. For each individual antibody, the constraint (2)

violation value for the jth individual is defined as

Vj ¼
Xn

i¼1

Xki

k¼1

ai;j;kxi;k � bj; if
Xn

i¼1

Xki

k¼1

ai;j;kxi;k > bj

0; otherwise

8><
>:

Note the objective and solution are deemed as the

antigen and antibody, respectively. After defining the

penalty function, the fitness of each antibody to the

antigen (objective) can be obtained. In other words,

the affinity between each antibody and antigen is able

to be determined. The affinity function (fitness func-

tion) of any Ab to Ag is described below:

Affinity ¼ RðxjqÞ
1 þ

Pm
j¼1 Vj

The above affinity value is to be maximized when the

penalty is minimized.

3.4. Genetic operation process

The implementation of genetic operations is the

same as in genetic algorithms. It including the

crossover operator and mutation operator requires

the selection of the crossover point(s) and mutation

point(s) for each antibody (string) under a predeter-

mined crossover probability and mutation probability.
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The crossover operator provides a thorough search of

the sample space to produce good solutions. The

mutation operator performs random perturbations to

selected solutions to avoid the local optimum. Note the

mutation rate must be small enough to avoid degrading

the performance.
4. Numerical results and discussion

To evaluate the performance of our artificial

immune algorithms for the integer nonlinear redun-

dant reliability problems, 33 test problems are solved.

The input data for a reliability system are described in
Table 2

Numerical results by artificial immune algorithm

No. Weight Reliability Solution

1 191 0.9868110 333, 11, 444, 3333, 222, 22

2 190 0.9864161 333, 11, 444, 3333, 222, 22

3 189 0.9859217 333, 11, 444, 3333, 222, 22

4 188 0.9853297 333, 11, 444, 3333, 222, 22

5 187 0.9844495 333, 22, 444, 333, 222, 22,

6 186 0.9841755 333, 11, 4444, 333, 222, 22

7 185 0.9834363 333, 11, 444, 333, 222, 22,

8 184 0.9826980 333, 11, 4444, 333, 222, 22

9 183 0.9822062 333, 11, 444, 333, 222, 22,

10 182 0.9815183 333, 11, 4444, 333, 222, 22

11 181 0.9810271 333, 11, 444, 333, 222, 22,

12 180 0.9802902 333, 11, 4444, 333, 222, 22

13 179 0.9795047 333, 11, 4444, 333, 222, 22

14 178 0.9782085 333, 11, 444, 333, 222, 22,

15 177 0.9772429 333, 11, 444, 333, 222, 22,

16 176 0.9766905 333, 11, 444, 333, 222, 22,

17 175 0.9757079 333, 11, 444, 333, 222, 22,

18 174 0.9746901 333, 11, 444, 333, 222, 22,

19 173 0.9737580 333, 11, 444, 333, 222, 22,

20 172 0.9730266 333, 11, 444, 333, 222, 22,

21 171 0.9719295 333, 11, 444, 333, 222, 22,

22 170 0.9707604 333, 11, 444, 333, 222, 22,

23 169 0.9692910 333, 11, 444, 333, 222, 22,

24 168 0.9681251 333, 11, 444, 333, 222, 22,

25 167 0.9663351 333, 11, 444, 333, 22, 22, 1

26 166 0.9650416 333, 11, 44, 333, 222, 22, 1

27 165 0.9637118 333, 11, 444, 333, 22, 22, 1

28 164 0.9624219 333, 11, 44, 333, 222, 22, 1

29 163 0.9606424 333, 11, 44, 333, 22, 22, 11

30 162 0.9591884 333, 11, 44, 333, 22, 22, 11

31 161 0.9580346 333, 11, 44, 333, 22, 22, 11

32 160 0.9557144 333, 11, 44, 333, 22, 22, 11

33 159 0.9545648 333, 11, 44, 333, 22, 22, 11

Note: The cost limitation is 130 for all 33 cases.
Table 1, which includes the component choices, and

the corresponding reliability of each component. The

input parameters have the same values as those of

Nakagawa and Miyazaki [4], Coit and Smith [5] and

Hsieh [7]. These test problems based on the

parameters in Table 1 are resolved with varying the

available weight varied incrementally from 159 to 191

while fixing the available cost = 130. Numerical

results obtained by using artificial immune algorithm

are shown in Table 2, and compared with those found

by Nakagawa and Miyazaki [4], Coit and Smith [5]

and Hsieh [7] in Table 3. Recall that, for each problem,

both the component choices and the number of the

chosen component are to be decided simultaneously.
Cost Weight

, 111, 1111, 12, 233, 33, 1111, 11, 34 130 191

, 111, 1111, 11, 233, 33, 1111, 12, 34 130 190

, 111, 1111, 23, 233, 13, 1111, 22, 34 130 189

, 111, 1111, 13, 233, 13, 1111, 12, 34 130 188

111, 1111, 23, 233, 33, 1112, 22, 34 130 187

, 111, 1111, 23, 233, 33, 1111, 22, 34 129 186

111, 1111, 23, 223, 33, 1111, 22, 34 128 185

, 111, 1111, 23, 333, 33, 1111, 22, 33 129 184

111, 1111, 23, 233, 33, 1111, 22, 333 128 183

, 111, 1111, 33, 333, 33, 1111, 22, 33 130 182

111, 1111, 33, 233, 33, 1111, 22, 33 129 181

, 111, 1111, 33, 223, 33, 1111, 22, 33 128 180

, 111, 1111, 33, 223, 13, 1111, 22, 33 126 179

33, 1111, 33, 233, 33, 1111, 22, 33 127 178

33, 133, 33, 223, 33, 1111, 22, 33 129 177

33, 1111, 33, 223, 13, 1111, 22, 33 124 176

13, 1111, 33, 223, 33, 1111, 22, 33 125 175

33, 113, 33, 223, 13, 1111, 12, 33 123 174

13, 113, 33, 233, 13, 1111, 22, 33 124 173

13, 113, 33, 223, 13, 1111, 22, 33 123 172

13, 113, 33, 222, 13, 1111, 22, 33 122 171

13, 113, 33, 222, 11, 1111, 22, 33 120 170

11, 113, 33, 222, 13, 1111, 22, 33 121 169

11, 113, 33, 222, 11, 1111, 22, 33 119 168

3, 113, 33, 222, 11, 1111, 22, 33 118 167

3, 113, 33, 222, 11, 1111, 22, 33 116 166

1, 113, 33, 222, 11, 1111, 22, 33 117 165

1, 113, 33, 222, 11, 1111, 22, 33 115 164

, 113, 33, 222, 13, 1111, 22, 33 114 163

, 113, 33, 222, 13, 1111, 22, 33 115 162

, 113, 33, 222, 11, 1111, 22, 33 113 161

, 111, 33, 222, 13, 1111, 22, 33 112 160

, 111, 33, 222, 11, 1111, 22, 33 110 159
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Table 3

Comparison of the proposed approach, Nakagawa and Miyazaki [4], Coit and Smith [5] and Hsieh [7] performance

No. W Nakagawa and Miyazaki Coit and Smith Hsieh Chen and You Note

Reliability Cost Weight Reliability Cost Weight Reliability Cost Weight Reliability Cost Weight

1 191 0.9864 130 191 0.98675 130 191 0.986711 130 191 0.986811 130 191 *

2 190 0.9854 132* 189 0.98603 129 190 0.986316 130 190 0.986416 130 190 *

3 189 0.9850 131* 188 0.98556 130 189 0.985724 130 189 0.985922 130 189 *

4 188 0.9847 129 188 0.98503 130 188 0.985031 130 188 0.985330 130 188 *

5 187 0.9840 133* 186 0.98429 129 187 0.984153 129 187 0.984449 130 187 *

6 186 0.9831 129 186 0.98362 128 186 0.983879 128 186 0.984176 129 186 *

7 185 0.9829 129 185 0.98311 130 185 0.983387 127 185 0.983436 128 185 *

8 184 0.9822 126 184 0.98239 128 184 0.982204 125 184 0.982698 129 184 *

9 183 0.9815 130 182 0.98190 130 183 0.981466 124 183 0.982206 128 183 *

10 182 0.9815 130 182 0.98102 126 182 0.979690 126 182 0.981518 130 182 *

11 181 0.9800 128 181 0.98006 128 181 0.979280 125 181 0.981027 129 181 *

12 180 0.9796 126 180 0.97942 129 180 0.978327 124 180 0.980290 128 180 *

13 179 0.9792 127 179 0.97906 125 179 0.978055 123 179 0.979505 126 179 *

14 178 0.9772 123 177 0.97810 127 178 0.976878 121 178 0.978208 127 178 *

15 177 0.9772 123 177 0.97715 125 177 0.975400 122 177 0.977243 129 177 *

16 176 0.9764 125 176 0.97642 124 176 0.974975 121 176 0.976690 124 176 *

17 175 0.9744 121 174 0.97552 122 175 0.973500 122 175 0.975708 125 175 *

18 174 0.9744 121 174 0.97435 123 174 0.972328 120 174 0.974690 123 174 *

19 173 0.9723 122 173 0.97362 122 173 0.970531 119 173 0.973758 124 173 *

20 172 0.9720 123 172 0.97266 120 172 0.969232 117 172 0.973027 123 172 *

21 171 0.9700 119 170 0.97186 121 171 0.967896 118 171 0.971929 122 171 *
22 170 0.9700 119 170 0.97076 120 170 0.966776 119 170 0.970760 120 170 *

23 169 0.9675 121 169 0.96922 120 169 0.965612 117 169 0.969291 121 169 *
24 168 0.9666 120 168 0.96813 119 168 0.964150 118 168 0.968125 119 168 *
25 167 0.9656 117 167 0.96634 118 167 0.962990 116 167 0.966335 120 167 *
26 166 0.9646 116 166 0.96504 116 166 0.961210 115 166 0.965042 116 166 *
27 165 0.9621 118 165 0.96371 117 165 0.959923 113 165 0.963712 117 165 *
28 164 0.9609 116 164 0.96242 115 164 0.958601 114 164 0.962422 115 164 *
29 163 0.9602 114 163 0.96064 114 163 0.957317 112 163 0.960642 114 163 *
30 162 0.9589 112 162 0.95912 114 162 0.955547 111 162 0.959188 115 162 *

31 161 0.9565 111 161 0.95803 113 161 0.954101 112 161 0.958035 113 161 *
32 160 0.9546 110 159 0.95567 114 160 0.952953 110 160 0.955714 112 160 *

33 159 0.9546 110 159 0.95432 110 159 0.950800 108 159 0.954565 110 159 *

Note: * represents the best solution found is superior than the solution found in literature; * represents the best solution found is as well as the

solution found in literature.
Our artificial immune algorithm is implemented in

MATLAB1 on the Pentium 42.0 GHz PC with the

following parameters: memory size = 120, mutation

rate = 0.01, crossover rate = 0.86 and the maximum

clone number = 10. Then number of generations was

specified to be 3000. The determination of immune

algorithm’s parameters is a significant problem for the

immune algorithm implementation. However, there is

no any formal methodology to solve the problem

because different value-combinations of the para-

meters result to different characteristics as well as

different performance of immune algorithms. There-

fore, one should note that the best values for the
artificial immune algorithm parameters are case-

dependent and based upon the experience from

preliminary runs.

The numerical results in Table 2 reports the detailed

solutions obtained by the proposed approach for each

test problem. Also, they are compared with those of

Nakagawa and Miyazaki [4], Coit and Smith [5] and

Hsieh [7] in Table 3.

The results in Table 3 indicate that:

 c
ompared with those of Nakagawa and Miyazaki

[4], 32 solutions (1–32) obtained by immune

algorithms-based approach are superior than those
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Fig

(sy
found by Nakagawa and Miyazaki [4]. The solution

found in the 33rd test problem by both approaches is

the same.

 c
ompared with those of Coit and Smith [5], the

proposed approach finds better solutions for 24 out

of 33 test problems. The solutions of the left nine

obtained by proposed approach are as well as those

obtained by those obtained by genetic algorithms

[5].

 c
ompared with those of Hsieh [7], it is seen that the

solutions found by our approach in all test problems

are superior than those found by Hsieh [7].

The comparison of numerical results for 33 test

problems with those in literatures is depicted in Fig. 4.

In the figure, three lines illustrates this observation of

comparisons, where

L1 ¼ R � RNM

1 � RNM
; L2 ¼ R � RCS

1 � RCS
and

L3 ¼ R � RHsieh

1 � RHsieh

The definition of the lines as above indicates the

maximum possible improvement (MPI) which is the

fraction that the best feasible solution achieved of the

maximum possible improvement, considering that

reliability � 1 [5]. Herein, R is the reliability by the

proposed IAs approach, RN&M the reliability by Naka-

gawa and Miyazaki [4], RC&S the reliability by Coit

and Smith [5] and RHsieh the reliability by Hsieh [7].
. 4. The comparison of numerical results for 33 test problems. L1 ¼
mbol ~).
According to the comparison of numerical results in

Table 3 and Fig. 3, it shows that the proposed IAs

approach performs better in those test problems with

larger values of W. In general, the immune algorithms-

based approach find better solutions for 24 test pro-

blems (W = 160, 162, 169 and 171–191), and tie the

well-known best solutions found by other methods in

the above three literatures.

Although the immune algorithm found better

solutions of 24 out of 33 test problems, the

improvement was extremely tiny, for instance: in test

problem 32 where the difference is on the order of

10�5. The differences are probably insignificant given

the possible lack of precision in the constraint

parameters such as in test problems 24 and 25.

However, in all 33 problems, then, one could say that

immune algorithms did find solutions of quality

comparable to those previously published in the

literature. Above all, compared with the solutions

found by Nakagawa and Miyazaki [4] and Hsieh [7],

the solutions found by proposed method are with more

significant improvement. Nevertheless, the solution

comparison between the proposed method and genetic

approach [5] shows the improvement is small (less

than 5%). It has to be emphasized that even very small

improvements in reliability are often hard to be

obtained in high reliability applications. Moreover,

besides the solutions found by the proposed approach,

no any of the other three approaches can dominate any

other two methods.
R�RNM
1�RNM

(symbol ^), L2 ¼ R�RCS
1�RCS

(symbol *) and L3 ¼ R�RHsieh
1�RHsieh
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It seems that GAs and IAs are very similar, but

there are an essential difference in the memory

adopting system and the production system of various

antibodies. It allows the global optimum to be

acquired by using this algorithms form many

optimization problems. The main reason is that the

IA’s diversity characteristic in memory makes the

proposed approach with more probability search the

global optimal solution. However, the above merit of

the IAs may become its disadvantage while the CPU

time is taken into account. Compared with GAs, the

memory-adopting process in IAs will take slightly

longer CPU time for each iteration. Although more

CPU time will be taken in IAs than in GAs, it is still

worth to do so since obtaining a system design with

higher reliability is very difficult and important in the

real-world applications.

According to above observation, it can be

concluded that the performance of the proposed

approach are superior than the other three methods

when used to find the maximum reliability for these

redundant reliability problems with multiple compo-

nent choices (CPU time is ignored).
5. Conclusions

The IA-based approach to the series–parallel

redundant reliability subject to multiple separable

linear constraints is proposed. Unlike genetic algo-

rithms, immune algorithms based approach preserves

diversity so that it is able to discover new optima over

time. Therefore, the convergence of immune algo-

rithms-based approach is never completed and this

diversity acts like a preventive measure. This notion of

viability of enabling further adaptations is precisely

what genetic algorithms were lacking and this may

become the reason why immune algorithms-based

approach provides superior solution than genetic

algorithms-based approaches do. The IAs-based

approach has been applied to solve the combinatory

optimization engineering problems but the problem

solved in this research is different than those

separated in the literature, since the type of component

and the component redundant levels are to be

decided simultaneously for the system optimization

problem. To deal with this difficulty, a solution

representation and special solution procedures are
proposed. Based on our limited experience, it suggests

that the IAs-based approach finds solutions which

are of a quality and are comparable to that of

other heuristic algorithms while the CPU time is

ignored. The proposed method achieves the global

solution or finds a near-global solution for each

problem tested.
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